Ad
related to: examples of decimal expansion problems in real life math applicationeducation.com has been visited by 100K+ users in the past month
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Educational Songs
Search results
Results from the WOW.Com Content Network
The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.
For example, in duodecimal, 1 / 2 = 0.6, 1 / 3 = 0.4, 1 / 4 = 0.3 and 1 / 6 = 0.2 all terminate; 1 / 5 = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; 1 / 7 = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...
Moreover, in the standard decimal representation of , an infinite sequence of trailing 0's appearing after the decimal point is omitted, along with the decimal point itself if is an integer. Certain procedures for constructing the decimal expansion of x {\displaystyle x} will avoid the problem of trailing 9's.
A real number is computable if its digit sequence can be produced by some algorithm or Turing machine. The algorithm takes an integer as input and produces the -th digit of the real number's decimal expansion as output. (The decimal expansion of a only refers to the digits following the decimal point.)
The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.
Another problem is to classify the real numbers whose β-expansions are periodic. Let β > 1, and Q(β) be the smallest field extension of the rationals containing β. Then any real number in [0,1) having a periodic β-expansion must lie in Q(β). On the other hand, the converse need not be true.
In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number. Depending on the construction of the real numbers used, completeness may take the form of an axiom (the completeness axiom), or may be a theorem proven from the construction.
In mathematics real is used as an adjective, meaning that the underlying field is the field of the real numbers (or the real field). For example, real matrix, real polynomial and real Lie algebra. The word is also used as a noun, meaning a real number (as in "the set of all reals").
Ad
related to: examples of decimal expansion problems in real life math applicationeducation.com has been visited by 100K+ users in the past month