enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive-definite function - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_function

    Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  4. Positive-definite kernel - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_kernel

    In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues ...

  5. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Popular solver with an API (C, C++, Java, .Net, Python, Matlab and R). Free for academics. Excel Solver Function: A nonlinear solver adjusted to spreadsheets in which function evaluations are based on the recalculating cells. Basic version available as a standard add-on for Excel. GAMS: A high-level modeling system for mathematical optimization ...

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Stieltjes matrix — symmetric positive definite with non-positive off-diagonal entries; Hilbert matrix — example of a matrix which is extremely ill-conditioned (and thus difficult to handle) Wilkinson matrix — example of a symmetric tridiagonal matrix with pairs of nearly, but not exactly, equal eigenvalues

  8. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is

  9. Positive definiteness - Wikipedia

    en.wikipedia.org/wiki/Positive_definiteness

    In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: Positive-definite bilinear form; Positive-definite function; Positive-definite function on a group; Positive-definite functional; Positive-definite kernel