Search results
Results from the WOW.Com Content Network
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.
One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as (,) and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable = / / + has the density [1]
The log-t distribution has the probability density function: (, ^, ^) = (+) ^ (+ ( ^ ^)) +,where ^ is the location parameter of the underlying (non-standardized) Student's t-distribution, ^ is the scale parameter of the underlying (non-standardized) Student's t-distribution, and is the number of degrees of freedom of the underlying Student's t-distribution. [1]
where t is a random variable distributed as Student's t-distribution with ν − 1 degrees of freedom. In fact, this implies that t i 2 / ν follows the beta distribution B (1/2,( ν − 1)/2). The distribution above is sometimes referred to as the tau distribution ; [ 2 ] it was first derived by Thompson in 1935.
Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t -distribution under the null hypothesis .
where M is the beam magnification provided by the beam expander that multiplies the angular dispersion provided by the diffraction grating. In practice, M can be as high as 100-200. [8] [11] When the dispersion of the multiple-prism expander is not equal to zero, then the single-pass linewidth is given by [5] [8]
In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...