Search results
Results from the WOW.Com Content Network
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
The first printed edition of the Karlsruhe Nuclide Chart of 1958 in the form of a wall chart was created by Walter Seelmann-Eggebert and his assistant Gerda Pfennig. Walter Seelmann-Eggebert was director of the Radiochemistry Institute in the 1956 founded "Kernreaktor Bau- und Betriebsgesellschaft mbH" in Karlsruhe, Germany (a predecessor institution of the later "(Kern-)Forschungszentrum ...
Interactive Chart of Nuclides (Brookhaven National Laboratory) The Lund/LBNL Nuclear Data Search; An isotope table with clickable information on every isotope and its decay routes is available at chemlab.pc.maricopa.edu; An example of free Universal Nuclide Chart with decay information for over 3000 nuclides is available at Nucleonica.net.
Interactive Chart of Nuclides (Brookhaven National Laboratory) The Lund/LBNL Nuclear Data Search; An isotope table with clickable information on every isotope and its decay routes is available at chemlab.pc.maricopa.edu; An example of free Universal Nuclide Chart with decay information for over 3000 nuclides is available at Nucleonica.net.
The shape of the valley is roughly an elongated paraboloid corresponding to the nuclide binding energies as a function of neutron and atomic numbers. [1] The nuclides within the valley of stability encompass the entire table of nuclides. The chart of those nuclides is also known as a Segrè chart, after the physicist Emilio Segrè. [3]
The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV, formally: m n − m nuclide / A, where A = Z + N is the mass number. Note that this means that a higher "energy" value actually means that the nuclide has a lower energy.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, while the isotope concept (grouping all atoms of each element) emphasizes ...
The Live Chart of Nuclides – IAEA Color-map of fission product yields, and detailed data by click on a nuclide. Periodic Table with isotope decay chain displays. Click on element, and then isotope mass number to see the decay chain (link to uranium 235 ).