Search results
Results from the WOW.Com Content Network
In numerical analysis, hill climbing is a mathematical optimization technique which belongs to the family of local search. It is an iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solution by making an incremental change to the solution.
One such algorithm is min-conflicts hill-climbing. [1] Given an initial assignment of values to all the variables of a constraint satisfaction problem (with one or more constraints not satisfied), select a variable from the set of variables with conflicts violating one or more of its constraints.
Hill climbing algorithms can only escape a plateau by doing changes that do not change the quality of the assignment. As a result, they can be stuck in a plateau where the quality of assignment has a local maxima. GSAT (greedy sat) was the first local search algorithm for satisfiability, and is a form of hill climbing.
Local search is an anytime algorithm; it can return a valid solution even if it's interrupted at any time after finding the first valid solution. Local search is typically an approximation or incomplete algorithm because the search may stop even if the current best solution found is not optimal. This can happen even if termination happens ...
Late acceptance hill climbing, created by Yuri Bykov in 2008 [1] is a metaheuristic search method employing local search methods used for mathematical optimization.
Iterated Local Search [1] [2] (ILS) is a term in applied mathematics and computer science defining a modification of local search or hill climbing methods for solving discrete optimization problems. Local search methods can get stuck in a local minimum , where no improving neighbors are available.
Variable neighborhood search (VNS), [1] proposed by Mladenović & Hansen in 1997, [2] is a metaheuristic method for solving a set of combinatorial optimization and global optimization problems. It explores distant neighborhoods of the current incumbent solution, and moves from there to a new one if and only if an improvement was made.
A specific implementation with termination criteria for a given iterative method like gradient descent, hill climbing, Newton's method, or quasi-Newton methods like BFGS, is an algorithm of an iterative method or a method of successive approximation.