Search results
Results from the WOW.Com Content Network
Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize .
Spinning band distillation achieves the same outcome by using a rotating band within the column to force the rising vapors and descending condensate into close contact, achieving equilibrium more quickly. In a typical fractional distillation, a liquid mixture is heated in the distilling flask, and the resulting vapor rises up the fractionating ...
Fractionation makes it possible to isolate more than two components in a mixture in a single run. This property sets it apart from other separation techniques. Fractionation is widely employed in many branches of science and technology. Mixtures of liquids and gasses are separated by fractional distillation by difference
For the binary distillation depicted in Figure 1, the required number of theoretical plates is 6. Constructing a McCabe–Thiele diagram is not always straightforward. In continuous distillation with a varying reflux ratio, the mole fraction of the lighter component in the top part of the distillation column will decrease as the reflux ratio ...
A common fractionating process is fractional distillation, in which separation is achieved by condensing a vapor over a range of temperatures. [1] It is used to produce liquor and various hydrocarbon fuels, such as gasoline, kerosene and diesel.
To design a distillation unit or a similar chemical process, the number of theoretical trays or plates (that is, hypothetical equilibrium stages), N t, required in the process should be determined, taking into account a likely range of feedstock composition and the desired degree of separation of the components in the output fractions.
Distillation, also classical distillation, is the process of separating the component substances of a liquid mixture of two or more chemically discrete substances; the separation process is realized by way of the selective boiling of the mixture and the condensation of the vapors in a still.
Distillation column in a cryogenic air separation plant The cryogenic separation process [ 4 ] [ 5 ] [ 6 ] requires a very tight integration of heat exchangers and separation columns to obtain a good efficiency and all the energy for refrigeration is provided by the compression of the air at the inlet of the unit.