enow.com Web Search

  1. Ad

    related to: graphing rational functions notes

Search results

  1. Results from the WOW.Com Content Network
  2. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    The degree of the graph of a rational function is not the degree as defined above: it is the maximum of the degree of the numerator and one plus the degree of the denominator. In some contexts, such as in asymptotic analysis, the degree of a rational function is the difference between the degrees of the numerator and the denominator.

  3. Minkowski's question-mark function - Wikipedia

    en.wikipedia.org/wiki/Minkowski's_question-mark...

    8.1 Notes. 8.2 Historical ... It also maps rational numbers to dyadic ... The graph of Minkowski question mark function is a special case of fractal curves known as ...

  4. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Dirichlet function: is an indicator function that matches 1 to rational numbers and 0 to irrationals. It is nowhere continuous. Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function.

  5. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.

  6. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    Rational functions can be either finite or infinite for finite values, or finite or infinite for infinite x values. Thus, rational functions can easily be incorporated into a rational function model. Rational function models can often be used to model complicated structure with a fairly low degree in both the numerator and denominator.

  7. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  8. Morphism of algebraic varieties - Wikipedia

    en.wikipedia.org/wiki/Morphism_of_algebraic...

    If X is a smooth complete curve (for example, P 1) and if f is a rational map from X to a projective space P m, then f is a regular map X → P m. [5] In particular, when X is a smooth complete curve, any rational function on X may be viewed as a morphism X → P 1 and, conversely, such a morphism as a rational function on X.

  9. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    If the parametrization is given by rational functions = (), = (), where p , q , and r are set-wise coprime polynomials, a resultant computation allows one to implicitize. More precisely, the implicit equation is the resultant with respect to t of xr ( t ) – p ( t ) and yr ( t ) – q ( t ) .

  1. Ad

    related to: graphing rational functions notes