Search results
Results from the WOW.Com Content Network
Oil conversion factor from m³ to bbl (or stb) is 6.28981100; Gas conversion factor from standard m³ to scf is 35.314666721; Note that the m³ gas conversion factor takes into account a difference in the standard temperature base for measurement of gas volumes in metric and imperial units.
This volume measurement was developed to estimate what volume of a round log would be usable timber after processing, in effect attempting to ‘square’ the log and allow for waste. The hoppus ton (HT) was also a traditionally used unit of volume in British forestry. One hoppus ton is equal to 50 hoppus feet or 1.8027 cubic meters.
A cubic yard (symbol yd 3) [1] is an Imperial / U.S. customary (non-SI non-metric) unit of volume, used in Canada and the United States. It is defined as the volume of a cube with sides of 1 yard (3 feet , 36 inches , 0.9144 meters ) in length .
A loop reactor is a hybrid type of catalytic reactor that physically resembles a tubular reactor, but operates like a CSTR. The reaction mixture is circulated in a loop of tube, surrounded by a jacket for cooling or heating, and there is a continuous flow of starting material in and product out.
A 1 inch tall uranium fuel pellet is equivalent to about 1 ton of coal, 120 gallons of crude oil, or 17,000 cubic feet of natural gas. [15] In light-water reactors , 1 kg of natural uranium – following a corresponding enrichment and used for power generation– is equivalent to the energy content of nearly 10,000 kg of mineral oil or 14,000 ...
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
A typical commercial reactor has a volume of 48 cubic metres (1,700 cu ft) with 5,400 kilograms (11,900 lb) of uranium at 288 °C (550 °F) and 177 atm. [4] Because of their large size and stored energy, commercial reactors require a robust "containment structure" to prevent the release of radioactive material in the event of an emergency ...
Current U.S. naval reactors are all pressurized water reactors, [4] which are identical to PWR commercial reactors producing electricity, except that: They have a high power density in a small volume and run either on low-enriched uranium (as do some French and Chinese submarines) or on highly enriched uranium (>20% U-235, current U.S ...