Search results
Results from the WOW.Com Content Network
List of cross-platform multi-threading libraries for the C++ programming language. Apache Portable Runtime; Boost.Thread; C++ Standard Library Thread; Dlib; HPX; IPP; OpenMP; OpenThreads; Parallel Patterns Library; POCO C++ Libraries Threading; POSIX Threads; Qt QThread; Rogue Wave SourcePro Threads Module; Stapl; TBB
In both cases, the features must be part of the language syntax and not an extension such as a library (libraries such as the posix-thread library implement a parallel execution model but lack the syntax and grammar required to be a programming language).
The libraries are aimed at a wide range of C++ users and application domains. They range from general-purpose libraries like the smart pointer library, to operating system abstractions like Boost FileSystem, to libraries primarily aimed at other library developers and advanced C++ users, like the template metaprogramming (MPL) and domain-specific language (DSL) creation (Proto).
oneAPI Threading Building Blocks (oneTBB; formerly Threading Building Blocks or TBB) is a C++ template library developed by Intel for parallel programming on multi-core processors. Using TBB, a computation is broken down into tasks that can run in parallel. The library manages and schedules threads to execute these tasks.
OpenMP is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, [3] on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows.
Many implementations of C and C++ support threading, and provide access to the native threading APIs of the operating system. A standardized interface for thread implementation is POSIX Threads (Pthreads), which is a set of C-function library calls. OS vendors are free to implement the interface as desired, but the application developer should ...
This type of multithreading is known as block, cooperative or coarse-grained multithreading. The goal of multithreading hardware support is to allow quick switching between a blocked thread and another thread ready to run. Switching from one thread to another means the hardware switches from using one register set to another.
However, deadlock-free guarantees cannot always be given, since deadlocks can be caused by callbacks and violation of architectural layering independent of the library itself. Software libraries can provide certain thread-safety guarantees. [5] For example, concurrent reads might be guaranteed to be thread-safe, but concurrent writes might not be.