Search results
Results from the WOW.Com Content Network
Although the unit knot does not fit within the SI system, its retention for nautical and aviation use is important because the length of a nautical mile, upon which the knot is based, is closely related to the longitude/latitude geographic coordinate system. As a result, nautical miles and knots are convenient units to use when navigating an ...
The airspeed indicator (ASI) or airspeed gauge is a flight instrument indicating the airspeed of an aircraft in kilometres per hour (km/h), knots (kn or kt), miles per hour (MPH) and/or metres per second (m/s). The recommendation by ICAO is to use km/h, however knots (kt) is currently the most used unit.
An aircraft's indicated airspeed in knots is typically abbreviated KIAS for "Knots-Indicated Air Speed" (vs. KCAS for calibrated airspeed and KTAS for true airspeed). The IAS is an important value for the pilot because it is the indicated speeds which are specified in the aircraft flight manual for such important performance values as the stall ...
Airspeed is commonly given in knots (kn). Since 2010, the International Civil Aviation Organization (ICAO) recommends using kilometers per hour (km/h) for airspeed (and meters per second for wind speed on runways), but allows using the de facto standard of knots, and has no set date on when to stop.
Here the speed is displayed both in knots (kn) and miles per hour (mph). The true airspeed (TAS; also KTAS, for knots true airspeed) of an aircraft is the speed of the aircraft relative to the air mass through which it is flying. The true airspeed is important information for accurate navigation of an aircraft.
The engineers hear the bell and move their handle to the same position to signal their acknowledgment of the order, and adjust the engine speed accordingly. Such an order is called a "bell"; for example, the order for a ship's maximum speed, flank speed, is called a "flank bell". [2]
To do this, one makes use of the fact that above the speed for best glide the polar sink speed of the sailplane increases roughly with the square of the airspeed. Since the pitot pressure also increases with the square of the speed, one can use it to 'compensate away' the effect of sailplane polar sink over virtually the entire speed range."
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.