Search results
Results from the WOW.Com Content Network
In oxygenic photosynthesis, the first electron donor is water, creating oxygen (O 2) as a by-product. In anoxygenic photosynthesis, various electron donors are used. Cytochrome b 6 f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways.
Beginning with photosynthesis, water (blue) and carbon dioxide (white) from the air are taken in with solar energy (yellow), and are converted into plant energy (green). [7] 100×10 15 grams of carbon/year fixed by photosynthetic organisms, which is equivalent to 4×10 18 kJ/yr = 4×10 21 J/yr of free energy.
The photosynthetic efficiency (i.e. oxygenic photosynthesis efficiency) is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction 6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2
Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .
The scientist Charles Barnes first used the word 'photosynthesis' in 1893. This word is taken from two Greek words, photos, which means light, and synthesis, which in chemistry means making a substance by combining simpler substances. So, in the presence of light, synthesis of food is called 'photosynthesis'.
Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but the process is anoxygenic and does not produce oxygen as a byproduct. They use wavelengths of light not absorbed by plants or cyanobacteria. Replacement of Mg 2+ with protons gives bacteriophaeophytin (BPh), the phaeophytin form.
Photosystem II is present on the thylakoid membranes inside chloroplasts, the site of photosynthesis in green plants. [9] The structure of Photosystem II is remarkably similar to the bacterial reaction center, and it is theorized that they share a common ancestor. The core of Photosystem II consists of two subunits referred to as D1 and D2 ...
Edible kilocalories produced from kilocalories of energy required for cultivation are: 18.1% for chicken, 6.7% for grass-fed beef, 5.7% for farmed salmon, and 0.9% for shrimp. In contrast, potatoes yield 123%, corn produce 250%, and soy results in 415% of input calories converted to calories able to be utilized by humans. [ 4 ]