enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann curvature tensor - Wikipedia

    en.wikipedia.org/wiki/Riemann_curvature_tensor

    In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field).

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:

  4. Curvature form - Wikipedia

    en.wikipedia.org/wiki/Curvature_form

    For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e. (,) = (,),

  5. Curvature of Riemannian manifolds - Wikipedia

    en.wikipedia.org/wiki/Curvature_of_Riemannian...

    The three identities form a complete list of symmetries of the curvature tensor, i.e. given any tensor that satisfies the identities above, one could find a Riemannian manifold with such a curvature tensor at some point. Simple calculations show that such a tensor has ⁠ / ⁠ independent components.

  6. Ricci curvature - Wikipedia

    en.wikipedia.org/wiki/Ricci_curvature

    Broadly, one could analogize the role of the Ricci curvature in Riemannian geometry to that of the Laplacian in the analysis of functions; in this analogy, the Riemann curvature tensor, of which the Ricci curvature is a natural by-product, would correspond to the full matrix of second derivatives of a function.

  7. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    A Riemannian space form is a Riemannian manifold with constant curvature which is additionally connected and geodesically complete. A Riemannian space form is said to be a spherical space form if the curvature is positive, a Euclidean space form if the curvature is zero, and a hyperbolic space form or hyperbolic manifold if

  8. Riemannian - Wikipedia

    en.wikipedia.org/wiki/Riemannian

    Riemannian circle; Riemannian submersion; Riemannian Penrose inequality; Riemannian holonomy; Riemann curvature tensor; Riemannian connection. Riemannian connection on a surface; Riemannian symmetric space; Riemannian volume form; Riemannian bundle metric; List of topics named after Bernhard Riemann; but may also refer to Hugo Riemann: Neo ...

  9. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    The geodesic flow of any compact Riemannian manifold with negative sectional curvature is ergodic. If M is a complete Riemannian manifold with sectional curvature bounded above by a strictly negative constant k then it is a CAT space. Consequently, its fundamental group Γ = π 1 (M) is Gromov hyperbolic. This has many implications for the ...