Search results
Results from the WOW.Com Content Network
The antipodal map preserves orientation (is homotopic to the identity map) [2] when is odd, and reverses it when is even. Its degree is ( − 1 ) n + 1 . {\displaystyle (-1)^{n+1}.} If antipodal points are identified (considered equivalent), the sphere becomes a model of real projective space .
A homeomorphism is a special case of a homotopy equivalence, in which g ∘ f is equal to the identity map id X (not only homotopic to it), and f ∘ g is equal to id Y. [7]: 0:53:00 Therefore, if X and Y are homeomorphic then they are homotopy-equivalent, but the opposite is not true. Some examples:
The degree of a map is a homotopy invariant; moreover for continuous maps from the sphere to itself it is a complete homotopy invariant, i.e. two maps ,: are homotopic if and only if = (). In other words, degree is an isomorphism between [ S n , S n ] = π n S n {\displaystyle \left[S^{n},S^{n}\right]=\pi _{n}S^{n}} and Z {\displaystyle ...
Two maps , are called homotopic relative to A if they are homotopic by a basepoint-preserving homotopy : [,] such that, for each p in and t in [,], the element (,) is in A. Note that ordinary homotopy groups are recovered for the special case in which A = { x 0 } {\displaystyle A=\{x_{0}\}} is the singleton containing the base point.
the inclusion, a retraction is a continuous map r such that =, that is, the composition of r with the inclusion is the identity of A. Note that, by definition, a retraction maps X onto A. A subspace A is called a retract of X if such a retraction exists. For instance, any non-empty space retracts to a point in the obvious way (any constant map ...
Low-dimensional examples: A connected map (0-connected map) is one that is onto path components (0th homotopy group); this corresponds to the homotopy fiber being non-empty. A simply connected map (1-connected map) is one that is an isomorphism on path components (0th homotopy group) and onto the fundamental group (1st homotopy group).
For example, the homotopy pushout encountered above always maps to the ordinary pushout. This map is not typically a weak equivalence, for example the join is not weakly equivalent to the pushout of X 0 ← X 0 × X 1 → X 1 {\displaystyle X_{0}\leftarrow X_{0}\times X_{1}\rightarrow X_{1}} , which is a point.
Two chain homotopic maps f and g induce the same maps on homology because (f − g) sends cycles to boundaries, which are zero in homology. In particular a homotopy equivalence is a quasi-isomorphism. (The converse is false in general.)