enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antipodal point - Wikipedia

    en.wikipedia.org/wiki/Antipodal_point

    The antipodal map preserves orientation (is homotopic to the identity map) [2] when is odd, and reverses it when is even. Its degree is ( − 1 ) n + 1 . {\displaystyle (-1)^{n+1}.} If antipodal points are identified (considered equivalent), the sphere becomes a model of real projective space .

  3. Homotopy - Wikipedia

    en.wikipedia.org/wiki/Homotopy

    Given two topological spaces X and Y, a homotopy equivalence between X and Y is a pair of continuous maps f : X → Y and g : Y → X, such that g ∘ f is homotopic to the identity map id X and f ∘ g is homotopic to id Y. If such a pair exists, then X and Y are said to be homotopy equivalent, or of the same homotopy type.

  4. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    Two maps , are called homotopic relative to A if they are homotopic by a basepoint-preserving homotopy : [,] such that, for each p in and t in [,], the element (,) is in A. Note that ordinary homotopy groups are recovered for the special case in which A = { x 0 } {\displaystyle A=\{x_{0}\}} is the singleton containing the base point.

  5. Degree of a continuous mapping - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_continuous_mapping

    The degree of a map is a homotopy invariant; moreover for continuous maps from the sphere to itself it is a complete homotopy invariant, i.e. two maps ,: are homotopic if and only if ⁡ = ⁡ (). In other words, degree is an isomorphism between [ S n , S n ] = π n S n {\displaystyle \left[S^{n},S^{n}\right]=\pi _{n}S^{n}} and Z {\displaystyle ...

  6. Retraction (topology) - Wikipedia

    en.wikipedia.org/wiki/Retraction_(topology)

    the inclusion, a retraction is a continuous map r such that =, that is, the composition of r with the inclusion is the identity of A. Note that, by definition, a retraction maps X onto A. A subspace A is called a retract of X if such a retraction exists. For instance, any non-empty space retracts to a point in the obvious way (any constant map ...

  7. Homotopical connectivity - Wikipedia

    en.wikipedia.org/wiki/Homotopical_connectivity

    An equivalent definition of homotopical connectivity is based on the homotopy groups of the space. A space is n-connected (or n-simple connected) if its first n homotopy groups are trivial. Homotopical connectivity is defined for maps, too. A map is n-connected if it is an isomorphism "up to dimension n, in homotopy".

  8. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    The null homotopic class acts as the identity of the group addition, and for X equal to S n (for positive n) — the homotopy groups of spheres — the groups are abelian and finitely generated. If for some i all maps are null homotopic, then the group π i consists of one element, and is called the trivial group.

  9. Fundamental group - Wikipedia

    en.wikipedia.org/wiki/Fundamental_group

    The term () is the second homotopy group of B, which is defined to be the set of homotopy classes of maps from to B, in direct analogy with the definition of . If E happens to be path-connected and simply connected, this sequence reduces to an isomorphism