Search results
Results from the WOW.Com Content Network
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
Proximity problems is a class of problems in computational geometry which involve estimation of distances between geometric objects.. A subset of these problems stated in terms of points only are sometimes referred to as closest point problems, [1] although the term "closest point problem" is also used synonymously to the nearest neighbor search.
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The formula for the closest point to the origin may be expressed more succinctly using notation from linear algebra. The expression a x + b y + c z {\displaystyle ax+by+cz} in the definition of a plane is a dot product ( a , b , c ) ⋅ ( x , y , z ) {\displaystyle (a,b,c)\cdot (x,y,z)} , and the expression a 2 + b 2 + c 2 {\displaystyle a^{2 ...
The performance of this algorithm is nearer to logarithmic time than linear time when the query point is near the cloud, because as the distance between the query point and the closest point-cloud point nears zero, the algorithm needs only perform a look-up using the query point as a key to get the correct result.
GJK makes use of Johnson's distance sub algorithm, which computes in the general case the point of a tetrahedron closest to the origin, but is known to suffer from numerical robustness problems. In 2017 Montanari, Petrinic, and Barbieri proposed a new sub algorithm based on signed volumes which avoid the multiplication of potentially small ...
Zhang [4] proposes a modified k-d tree algorithm for efficient closest point computation. In this work a statistical method based on the distance distribution is used to deal with outliers, occlusion, appearance, and disappearance, which enables subset-subset matching.
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .