enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann curvature tensor - Wikipedia

    en.wikipedia.org/wiki/Riemann_curvature_tensor

    In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field).

  3. Shape of the universe - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_universe

    The Friedmann–Lemaître–Robertson–Walker (FLRW) model using Friedmann equations is commonly used to model the universe. The FLRW model provides a curvature of the universe based on the mathematics of fluid dynamics, that is, modeling the matter within the universe as a perfect fluid. Although stars and structures of mass can be introduced ...

  4. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    A tensor field is then defined as a map from the manifold to the tensor bundle, each point being associated with a tensor at . The notion of a tensor field is of major importance in GR. For example, the geometry around a star is described by a metric tensor at each point, so at each point of the spacetime the value of the metric should be given ...

  5. Curvature of Riemannian manifolds - Wikipedia

    en.wikipedia.org/wiki/Curvature_of_Riemannian...

    Although individually, the Weyl tensor and Ricci tensor do not in general determine the full curvature tensor, the Riemann curvature tensor can be decomposed into a Weyl part and a Ricci part. This decomposition is known as the Ricci decomposition, and plays an important role in the conformal geometry of Riemannian manifolds.

  6. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...

  7. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    Every Riemannian symmetric space is homogeneous, and consequently is geodesically complete and has constant scalar curvature. However, Riemannian symmetric spaces also have a much stronger curvature property not possessed by most homogeneous Riemannian manifolds, namely that the Riemann curvature tensor and Ricci curvature are parallel.

  8. Ricci curvature - Wikipedia

    en.wikipedia.org/wiki/Ricci_curvature

    Broadly, one could analogize the role of the Ricci curvature in Riemannian geometry to that of the Laplacian in the analysis of functions; in this analogy, the Riemann curvature tensor, of which the Ricci curvature is a natural by-product, would correspond to the full matrix of second derivatives of a function.

  9. Cartan–Ambrose–Hicks theorem - Wikipedia

    en.wikipedia.org/wiki/Cartan–Ambrose–Hicks...

    In mathematics, the Cartan–Ambrose–Hicks theorem is a theorem of Riemannian geometry, according to which the Riemannian metric is locally determined by the Riemann curvature tensor, or in other words, behavior of the curvature tensor under parallel translation determines the metric.