Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The third power of the trinomial a + b + c is given by (+ +) = + + + + + + + + +. This can be computed by hand using the distributive property of multiplication over addition and combining like terms, but it can also be done (perhaps more easily) with the multinomial theorem.
The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:
As there is zero X n+1 or X −1 in (1 + X) n, one might extend the definition beyond the above boundaries to include () = when either k > n or k < 0. This recursive formula then allows the construction of Pascal's triangle , surrounded by white spaces where the zeros, or the trivial coefficients, would be.
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f (x) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A periodic Bernoulli polynomial P n (x) is a Bernoulli polynomial evaluated at the fractional part of the argument x. These functions are used to provide the remainder term in the Euler–Maclaurin formula relating sums to integrals. The first polynomial is a sawtooth function.