Search results
Results from the WOW.Com Content Network
A consequence of Cauchy's postulate is Cauchy's Fundamental Lemma, [1] [7] [11] also called the Cauchy reciprocal theorem, [12]: p.103–130 which states that the stress vectors acting on opposite sides of the same surface are equal in magnitude and opposite in direction.
The effect of stress in the continuum flow is represented by the ∇p and ∇ ⋅ τ terms; these are gradients of surface forces, analogous to stresses in a solid. Here ∇p is the pressure gradient and arises from the isotropic part of the Cauchy stress tensor. This part is given by the normal stresses that occur in almost all situations.
where σ is the Cauchy stress tensor, and f accounts for body forces present. This equation is called the Cauchy momentum equation and describes the non-relativistic momentum conservation of any continuum that conserves mass. σ is a rank two symmetric tensor given by its covariant components.
The first pivotal theorem proved by Cauchy, now known as Cauchy's integral theorem, was the following: ∮ C f ( z ) d z = 0 , {\displaystyle \oint _{C}f(z)dz=0,} where f ( z ) is a complex-valued function holomorphic on and within the non-self-intersecting closed curve C (contour) lying in the complex plane .
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.
Thus the stress state of the material must be described by a tensor, called the (Cauchy) stress tensor; which is a linear function that relates the normal vector n of a surface S to the traction vector T across S. With respect to any chosen coordinate system, the Cauchy stress tensor can be represented as a symmetric matrix of 3×3
In continuum mechanics, the most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several alternative measures of stress can be defined: [1] [2] [3] The Kirchhoff stress (). The nominal stress ().
All non-relativistic balance equations, such as the Navier–Stokes equations, can be derived by beginning with the Cauchy equations and specifying the stress tensor through a constitutive relation. By expressing the deviatoric (shear) stress tensor in terms of viscosity and the fluid velocity gradient, and assuming constant viscosity, the ...