Search results
Results from the WOW.Com Content Network
Aquaporins are "the plumbing system for cells". Water moves through cells in an organized way, most rapidly in tissues that have aquaporin water channels. [28] For many years, scientists assumed that water leaked through the cell membrane, and some water does. However, this did not explain how water could move so quickly through some cells. [28]
Cytolysis, or osmotic lysis, occurs when a cell bursts due to an osmotic imbalance that has caused excess water to diffuse into the cell. Water can enter the cell by diffusion through the cell membrane or through selective membrane channels called aquaporins, which greatly facilitate the flow of water. [ 1 ]
Sea slugs respire through a gill (or ctenidium). Aquatic respiration is the process whereby an aquatic organism exchanges respiratory gases with water, obtaining oxygen from oxygen dissolved in water and excreting carbon dioxide and some other metabolic waste products into the water.
Osmosis is important in regulating the balance of water and salt within cells, thus it plays a critical role in maintaining homeostasis. [15] Aquaporins are integral membrane proteins that allow for the rapid passage of water and glycerol through membranes. The aquaporin monomers consist of six transmembrane alpha-helix domains and these ...
Fluid shifts occur when the body's fluids move between the fluid compartments. Physiologically, this occurs by a combination of hydrostatic pressure gradients and osmotic pressure gradients. Water will move from one space into the next passively across a semi permeable membrane until the hydrostatic and osmotic pressure gradients balance each ...
The stage in which water flows into the CV is called diastole. The contraction of the contractile vacuole and the expulsion of water out of the cell is called systole. Water always flows first from outside the cell into the cytoplasm, and is only then moved from the cytoplasm into the contractile vacuole for expulsion. Species that possess a ...
“Water is needed for regulating body temperature, transporting nutrients, removing waste production and more. Every cell in the body needs water to function daily,” Gervacio explains.
When the solutes around a cell become more or less concentrated, osmotic pressure causes water to flow into or out of the cell to equilibrate. [8] This osmotic stress inhibits cellular functions that depend on the activity of water in the cell, such as the functioning of its DNA and protein systems and proper assembly of its plasma membrane. [9]