enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    The above argument holds true for any number/type of discontinuities in the equations for curvature, provided that in each case the equation retains the term for the subsequent region in the form , , etc. It should be remembered that for any x, giving the quantities within the brackets, as in the above case, -ve should be neglected, and the ...

  4. Riemann problem - Wikipedia

    en.wikipedia.org/wiki/Riemann_problem

    A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest.

  5. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind. With this remark the theorem takes the stronger form: Let be a monotone function defined on an interval .

  6. Talk:Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Talk:Classification_of...

    For example, my brother's red socks are not in the domain of a function of a real variable, but presumably my brother's red socks are not a discontinuity of such a function. Perhaps (in the case of real valued functions of a a real variable) the technicality is that "f(x) is continuous at x = a" is only defined for real numbers "a", so its ...

  7. Shocks and discontinuities (magnetohydrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Shocks_and_discontinuities...

    In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .

  8. Newfoundland's Funny Way of Letting Dad Know It's Time to Go ...

    www.aol.com/lifestyle/newfoundlands-funny-way...

    The footage is a hilarious example of how a jacket becomes the official "taking the dog for a walk" coat. The dog was so confused. Dad's jacket was on, ...

  9. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.