enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. UTF-32 - Wikipedia

    en.wikipedia.org/wiki/UTF-32

    UTF-32 (32-bit Unicode Transformation Format), sometimes called UCS-4, is a fixed-length encoding used to encode Unicode code points that uses exactly 32 bits (four bytes) per code point (but a number of leading bits must be zero as there are far fewer than 2 32 Unicode code points, needing actually only 21 bits). [1]

  3. Comparison of Unicode encodings - Wikipedia

    en.wikipedia.org/.../Comparison_of_Unicode_encodings

    The nonet encodings UTF-9 and UTF-18 are April Fools' Day RFC joke specifications, although UTF-9 is a functioning nonet Unicode transformation format, and UTF-18 is a functioning nonet encoding for all non-Private-Use code points in Unicode 12 and below, although not for Supplementary Private Use Areas or portions of Unicode 13 and later.

  4. Universal Coded Character Set - Wikipedia

    en.wikipedia.org/wiki/Universal_Coded_Character_Set

    Unicode also adopted UTF-16, but in Unicode terminology, the high-half zone elements become "high surrogates" and the low-half zone elements become "low surrogates". [clarification needed] Another encoding, UTF-32 (previously named UCS-4), uses four bytes (total 32 bits) to encode a single character of the codespace. UTF-32 thereby permits a ...

  5. Byte order mark - Wikipedia

    en.wikipedia.org/wiki/Byte_order_mark

    The BOM for little-endian UTF-32 is the same pattern as a little-endian UTF-16 BOM followed by a UTF-16 NUL character, an unusual example of the BOM being the same pattern in two different encodings. Programmers using the BOM to identify the encoding will have to decide whether UTF-32 or UTF-16 with a NUL first character is more likely.

  6. Unicode - Wikipedia

    en.wikipedia.org/wiki/Unicode

    Unicode defines two mapping methods: the Unicode Transformation Format (UTF) encodings, and the Universal Coded Character Set (UCS) encodings. An encoding maps (possibly a subset of) the range of Unicode code points to sequences of values in some fixed-size range, termed code units. All UTF encodings map code points to a unique sequence of ...

  7. Character encoding - Wikipedia

    en.wikipedia.org/wiki/Character_encoding

    Simple character encoding schemes include UTF-8, UTF-16BE, UTF-32BE, UTF-16LE, and UTF-32LE; compound character encoding schemes, such as UTF-16, UTF-32 and ISO/IEC 2022, switch between several simple schemes by using a byte order mark or escape sequences; compressing schemes try to minimize the number of bytes used per code unit (such as SCSU ...

  8. Unicode and HTML - Wikipedia

    en.wikipedia.org/wiki/Unicode_and_HTML

    For UTF-8, the BOM is optional, while it is a must for the UTF-16 and the UTF-32 encodings. (Note: UTF-16 and UTF-32 without the BOM are formally known under different names, they are different encodings, and thus needs some form of encoding declaration – see UTF-16BE, UTF-16LE, UTF-32LE and UTF-32BE.) The use of the BOM character (U+FEFF ...

  9. Universal Character Set characters - Wikipedia

    en.wikipedia.org/wiki/Universal_Character_Set...

    The sequence also has no meaning in any arrangement of UTF-32 encoding, so, in summary, it serves as a fairly reliable indication that the text stream is encoded as UTF-16 in big-endian byte order. Conversely, if the first two bytes are 0xFF, 0xFE, then the text stream may be assumed to be encoded as UTF-16LE because, read as a 16-bit little ...