Search results
Results from the WOW.Com Content Network
The atomic number or nuclear charge number (symbol Z) of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons , this is equal to the proton number ( n p ) or the number of protons found in the nucleus of every atom of that element.
The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8, meaning each oxygen atom has 8 protons in its nucleus. Atoms of the same element can have different numbers of neutrons in their nuclei, known as isotopes of the element. Two or more atoms can combine to form molecules.
In chemistry, the number of protons in the nucleus of an atom is known as the atomic number, which determines the chemical element to which the atom belongs. For example, the atomic number of chlorine is 17; this means that each chlorine atom has 17 protons and that all atoms with 17 protons are chlorine atoms.
In chemistry, the whole number rule states that the masses of the isotopes are whole number multiples of the mass of the hydrogen atom. [1] The rule is a modified version of Prout's hypothesis proposed in 1815, to the effect that atomic weights are multiples of the weight of the hydrogen atom. [2]
Each distinct atomic number therefore corresponds to a class of atom: these classes are called the chemical elements. [5] The chemical elements are what the periodic table classifies and organizes. Hydrogen is the element with atomic number 1; helium, atomic number 2; lithium, atomic number 3; and so on.
One example is that someone can use the charge of an ion to find the oxidation number of a monatomic ion. For example, the oxidation number of + is +1. This helps when trying to solve oxidation questions. A charge number also can help when drawing Lewis dot structures. For example, if the structure is an ion, the charge will be included outside ...
In the context of atomic physics, using the atomic units system can be a convenient shortcut, eliminating symbols and numbers and reducing the order of magnitude of most numbers involved. For example, the Hamiltonian operator in the Schrödinger equation for the helium atom with standard quantities, such as when using SI units, is [2]
The mass number (symbol A, from the German word: Atomgewicht, "atomic weight"), [1] also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approximately equal to the atomic (also known as isotopic) mass of the atom expressed in atomic mass units.