Search results
Results from the WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Water: 5.536 0.03049 Xenon: 4.250 0.05105 Units. 1 J·m 3 /mol 2 = 1 m 6 ·Pa/mol 2 = 10 L 2 ·bar/mol 2. 1 L 2 atm/mol 2 = 0.101325 J·m 3 /mol 2 = 0.101325 Pa·m 6 ...
To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the molar concentration of water is
The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa
One way to write the van der Waals equation is: [8] [9] [10] = where is pressure, is temperature, and = / is molar volume. In addition is the Avogadro constant, is the volume, and is the number of molecules (the ratio / is a physical quantity with base unit mole (symbol mol) in the SI).
Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely, multiply by 0.001. Specific volume is inversely proportional to density.
1 Nm 3 of any gas (measured at 0 °C and 1 atmosphere of absolute pressure) equals 37.326 scf of that gas (measured at 60 °F and 1 atmosphere of absolute pressure). 1 kmol of any ideal gas equals 22.414 Nm 3 of that gas at 0 °C and 1 atmosphere of absolute pressure ... and 1 lbmol of any ideal gas equals 379.482 scf of that gas at 60 °F and ...
It represents the number of gas molecules or moles that would occupy one cubic centimeter at standard temperature and pressure, as calculated via the ideal gas law. To denote a pressure differential, the notation 'cmHg' is used; a 'centimetre of mercury', which is ten times the more familiar ' millimetre of mercury '.