enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The theorem tells us how different parts of the mass distribution affect the gravitational force measured at a point located a distance r 0 from the center of the mass distribution: [13] The portion of the mass that is located at radii r < r 0 causes the same force at the radius r 0 as if all of the mass enclosed within a sphere of radius r 0 ...

  4. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The total center of mass of the forks, cork, and toothpick is on top of the pen's tip. Significant aspects of the motion of an extended body can be understood by imagining the mass of that body concentrated to a single point, known as the center of mass. The location of a body's center of mass depends upon how that body's material is distributed.

  6. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    Let the percentage of the total mass divided between these two particles vary from 100% P 1 and 0% P 2 through 50% P 1 and 50% P 2 to 0% P 1 and 100% P 2, then the center of mass R moves along the line from P 1 to P 2. The percentages of mass at each point can be viewed as projective coordinates of the point R on this line, and are termed ...

  7. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    According to Newton's law of universal gravitation, the magnitude of the attractive force (F) between two bodies each with a spherically symmetric density distribution is directly proportional to the product of their masses, m 1 and m 2, and inversely proportional to the square of the distance, r, directed along the line connecting their centres of mass: =.

  8. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    An approximate value for gravity at a distance r from the center of the Earth can be obtained by assuming that the Earth's density is spherically symmetric. The gravity depends only on the mass inside the sphere of radius r. All the contributions from outside cancel out as a consequence of the inverse-square law of gravitation. Another ...

  9. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    In consequence both the sun and the planets can be considered as point masses and the same formula applied to planetary motions. (As planets and natural satellites form pairs of comparable mass, the distance 'r' is measured from the common centers of mass of each pair rather than the direct total distance between planet centers.)