enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficients has a solution which is a complex number. For example, the equation (+) = has no real solution, because the square of a real number cannot be negative, but has the two nonreal complex solutions + and .

  3. cis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Cis_(mathematics)

    x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.

  4. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    exists and is a nonzero complex number. In this case, the point at infinity is a pole of order n if n > 0, and a zero of order | | if n < 0. For example, a polynomial of degree n has a pole of degree n at infinity. The complex plane extended by a point at infinity is called the Riemann sphere.

  5. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    A modest extension of the version of de Moivre's formula given in this article can be used to find the n-th roots of a complex number for a non-zero integer n. (This is equivalent to raising to a power of 1 / n). If z is a complex number, written in polar form as = (⁡ + ⁡),

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    In fact, the same proof shows that Euler's formula is even valid for all complex numbers x. A point in the complex plane can be represented by a complex number written in cartesian coordinates. Euler's formula provides a means of conversion between cartesian coordinates and polar coordinates. The polar form simplifies the mathematics when used ...

  7. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}

  8. HP 35s - Wikipedia

    en.wikipedia.org/wiki/HP_35s

    The 35s stores complex numbers as single values, which can then be operated on in the standard ways. The above example of adding 12 + 34i and 56 + 78i then becomes: 1 2 i 3 4 ↵ Enter 5 6 i 7 8 +. On the 35s, the number of functions able to handle complex numbers is limited and somewhat arbitrary.

  9. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    The complex number z can be represented in rectangular form as = + where i is the imaginary unit, or can alternatively be written in polar form as = (⁡ + ⁡) and from there, by Euler's formula, [14] as = = ⁡. where e is Euler's number, and φ, expressed in radians, is the principal value of the complex number function arg applied to x + iy ...