Search results
Results from the WOW.Com Content Network
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) ... Formic acid: 101.0 2.4 8.0 –2.77 K b & K f [1] ... Acetic Anhydride: 139.0 [6] Ethylene Dichloride: 1.25
This is a list of the various reported boiling points for the elements, with recommended values to be used elsewhere on Wikipedia. ... 1 H hydrogen (H 2) use: 20.271 ...
Because acetic anhydride is not stable in water, the conversion is conducted under anhydrous conditions. To a decreasing extent, acetic anhydride is also prepared by the reaction of ketene with acetic acid at 45–55 °C and low pressure (0.05–0.2 bar). [8] H 2 C=C=O + CH 3 COOH → (CH 3 CO) 2 O (ΔH = −63 kJ/mol)
Sap must first be collected and boiled down to obtain syrup. Maple syrup is made by boiling between 20 and 50 volumes of sap (depending on its concentration) over an open fire until 1 volume of syrup is obtained, usually at a temperature 4.1 °C (7.4 °F) over the boiling point of water.
Following is a table of the change in the boiling point of water with elevation, at intervals of 500 meters over the range of human habitation [the Dead Sea at −430.5 metres (−1,412 ft) to La Rinconada, Peru at 5,100 m (16,700 ft)], then of 1,000 meters over the additional range of uninhabited surface elevation [up to Mount Everest at 8,849 ...
Acetic acid / ə ˈ s iː t ɪ k /, systematically named ethanoic acid / ˌ ɛ θ ə ˈ n oʊ ɪ k /, is an acidic, colourless liquid and organic compound with the chemical formula CH 3 COOH (also written as CH 3 CO 2 H, C 2 H 4 O 2, or HC 2 H 3 O 2).
Both C-C central bonds are equivalent as well, with one hydrogen atom bonded to the central carbon atom (the C3 atom). Those two equivalencies are because there is a resonance between the four bonds in the O-C2-C3-C4-O linkage in the acetylacetonate anion, where the bond order of those four bonds is about 1.5.