Search results
Results from the WOW.Com Content Network
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.
Calculus is of vital importance in physics: many physical processes are described by equations involving derivatives, called differential equations. Physics is particularly concerned with the way quantities change and develop over time, and the concept of the " time derivative " — the rate of change over time — is essential for the precise ...
Further time derivatives have also been named, as snap or jounce (fourth derivative), crackle (fifth derivative), and pop (sixth derivative). [12] [13] The seventh derivative is known as "Bang," as it is a logical continuation to the cycle. The eighth derivative has been referred to as "Boom," and the 9th is known as "Crash."
The growth rate of output is the time derivative of the flow of output divided by output itself. The growth rate of the labor force is the time derivative of the labor force divided by the labor force itself. And sometimes there appears a time derivative of a variable which, unlike the examples above, is not measured in units of currency:
In physics, particularly kinematics, jerk is defined as the third derivative of the position function of an object. It is, essentially, the rate at which acceleration changes. In mathematical terms:
The time derivatives of the position and momentum variables are given by partial derivatives of the Hamiltonian, via Hamilton's equations. [19]: 203 The simplest example is a point mass constrained to move in a straight line, under the effect of a potential
Mathematical descriptions of change use differentials and derivatives. Various differentials, derivatives, and functions become related via equations, such that a differential equation is a result that describes dynamically changing phenomena, evolution, and variation.