enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  3. Poisson sampling - Wikipedia

    en.wikipedia.org/wiki/Poisson_sampling

    The probability of being included in a sample during the drawing of a single sample is denoted as the first-order inclusion probability of that element (). If all first-order inclusion probabilities are equal, Poisson sampling becomes equivalent to Bernoulli sampling , which can therefore be considered to be a special case of Poisson sampling.

  4. Most probable number - Wikipedia

    en.wikipedia.org/wiki/Most_probable_number

    The MPN method involves taking the original solution or sample, and subdividing it by orders of magnitude (frequently 10× or 2×), and assessing presence/absence in multiple subdivisions. The degree of dilution at which absence begins to appear indicates that the items have been diluted so much that there are many subsamples in which none appear.

  5. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr( X = 0) = 0.05 and hence (1− p ) n = .05 so n ln (1– p ) = ln .05 ≈ −2.996.

  6. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    (The sample mean need not be a consistent estimator for any population mean, because no mean needs to exist for a heavy-tailed distribution.) A well-defined and robust statistic for the central tendency is the sample median, which is consistent and median-unbiased for the population median.

  7. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.

  8. (a,b,0) class of distributions - Wikipedia

    en.wikipedia.org/wiki/(a,b,0)_class_of_distributions

    The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution. Only the Poisson, binomial and negative binomial distributions satisfy the full form of this

  9. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    A far more extreme case of a biased estimator being better than any unbiased estimator arises from the Poisson distribution. [6] [7] Suppose that X has a Poisson distribution with expectation λ. Suppose it is desired to estimate ⁡ (=) = with a sample of size 1.