Search results
Results from the WOW.Com Content Network
Initially researching commutative algebra, Epp became interested by cognitive psychology, especially in education of Mathematics, Logic, Proof, and the Language of mathematics. She wrote several articles about teaching logic and proof in American Mathematical Monthly , and the Mathematics Teacher , a Journal by the National Council of Teachers ...
P. Oxy. 29, one of the oldest surviving fragments of Euclid's Elements, a textbook used for millennia to teach proof-writing techniques. The diagram accompanies Book II, Proposition 5. [1] A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the
In mathematical logic, Lindström's theorem (named after Swedish logician Per Lindström, who published it in 1969) states that first-order logic is the strongest logic [1] (satisfying certain conditions, e.g. closure under classical negation) having both the (countable) compactness property and the (downward) Löwenheim–Skolem property.
Cantor's first uncountability proof. uncountability of the real numbers; Combinatorics; Combinatory logic; Co-NP; Coset; Countable. countability of a subset of a countable set (to do) Angle of parallelism; Galois group. Fundamental theorem of Galois theory (to do) Gödel number. Gödel's incompleteness theorem; Group (mathematics) Halting problem
More exotic proof calculi such as Jean-Yves Girard's proof nets also support a notion of analytic proof. A particular family of analytic proofs arising in reductive logic are focused proofs which characterise a large family of goal-directed proof-search procedures. The ability to transform a proof system into a focused form is a good indication ...
Metamath is a formal language and an associated computer program (a proof assistant) for archiving and verifying mathematical proofs. [2] Several databases of proved theorems have been developed using Metamath covering standard results in logic, set theory, number theory, algebra, topology and analysis, among others.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Throughout the rest of the book he treats, and compares, both Formalist (classical) and Intuitionist logics with an emphasis on the former. Extraordinary writing by an extraordinary mathematician. Mancosu, P. (ed., 1998), From Hilbert to Brouwer. The Debate on the Foundations of Mathematics in the 1920s, Oxford University Press, Oxford, UK.