Search results
Results from the WOW.Com Content Network
Pairwise or specific coevolution, between exactly two species, is not the only possibility; in multi-species coevolution, which is sometimes called guild or diffuse coevolution, several to many species may evolve a trait or a group of traits in reciprocity with a set of traits in another species, as has happened between the flowering plants and ...
Mosaic coevolution is a theory in which geographic location and community ... Arms races consist of two species adapting ways to "one up" the other. ... This causes ...
Short-lived breeders: species that are in the juvenile phase for most of their lives. The adult lives are so short most do not have working mouth parts. Unrelated species: cicada, mayflies, some flies, dragonfly, silk moths, and some other moths. [154] [155] Katydids and frogs both make loud sounds with a sound-producing organs to attract ...
Hummingbirds and sunbirds, two nectarivorous bird lineages in the New and Old Worlds have parallelly evolved a suite of specialized behavioral and anatomical traits. These traits (bill shape, digestive enzymes, and flight) allow the birds to optimally fit the flower-feeding-and-pollination ecological niche they occupy, which is shaped by the birds' suites of parallel traits.
Mutualism involves a close, mutually beneficial interaction between two different biological species, whereas "cooperation" is a more general term that can involve looser interactions and can be interspecific (between species) or intraspecific (within a species). In commensalism, one of the two participating species benefits, while the other is ...
Black smokers provide energy and nutrients to chemoautotrophic bacteria, which in turn have symbiotically cospeciated with deep sea clams.. Among animals, symbiotic cospeciation is seen between Uroleucon (aphids) and Buchnera (plants in the Orobanchaceae), [10] between deep sea clams and chemoautotrophic bacteria, [11] and between Dendroctonus bark beetles and certain fungi.
Dual inheritance theory (DIT), also known as gene–culture coevolution or biocultural evolution, [1] was developed in the 1960s through early 1980s to explain how human behavior is a product of two different and interacting evolutionary processes: genetic evolution and cultural evolution.
In biology, co-adaptation is the process by which two or more species, genes or phenotypic traits undergo adaptation as a pair or group. This occurs when two or more interacting characteristics undergo natural selection together in response to the same selective pressure or when selective pressures alter one characteristic and consecutively alter the interactive characteristic.