Search results
Results from the WOW.Com Content Network
Crystal oscillators can be manufactured for oscillation over a wide range of frequencies, from a few kilohertz up to several hundred megahertz.Many applications call for a crystal oscillator frequency conveniently related to some other desired frequency, so hundreds of standard crystal frequencies are made in large quantities and stocked by electronics distributors.
A typical Q value for a quartz oscillator ranges from 10 4 to 10 6, compared to perhaps 10 2 for an LC oscillator. The maximum Q for a high stability quartz oscillator can be estimated as Q = 1.6 × 10 7 /f, where f is the resonant frequency in megahertz. [21] [22]
An oscillator of this type is known as an oven-controlled crystal oscillator (OCXO, where "XO" is an old abbreviation for "crystal oscillator"). This type of oscillator achieves the highest frequency stability possible with a crystal.
If the Clapp transconductance is set to just oscillate at the lowest frequency, then the oscillator will be overdriven at its highest frequency. If the frequency changed by a factor of 1.5, then the loop gain at the high end would be 3.375 times higher; this higher gain requires significant compression.
The period and frequency are determined by the size of the mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity. The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero ...
[5] [6] This is surpassed by the CPU-Z overclocking record for the highest CPU clock rate at 8.79433 GHz with an AMD FX-8350 Piledriver-based chip bathed in LN2, achieved in November 2012. [7] [8] It is also surpassed by the slightly slower AMD FX-8370 overclocked to 8.72 GHz which tops off the HWBOT frequency rankings.
Simple relaxation oscillator made by feeding back an inverting Schmitt trigger's output voltage through a RC network to its input.. An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, [1] [2] [3] powered by a direct current (DC) source.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...