Search results
Results from the WOW.Com Content Network
Membraneless Fuel Cells convert stored chemical energy into electrical energy without the use of a conducting membrane as with other types of Fuel Cells.In Laminar flow fuel cells (LFFC) this is achieved by exploiting the phenomenon of non-mixing laminar flows where the interface between the two flows works as a proton/ion conductor.
A fuel cell is an electrochemical energy conversion device. Fuel cells differ from batteries in that they are designed for continuous replenishment of the reactants consumed. This is a partial list of companies currently producing commercially available fuel cell systems for use in residential, commercial, or industrial settings.
Demonstration model of a direct methanol fuel cell (black layered cube) in its enclosure Scheme of a proton-conducting fuel cell. A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) [1] into electricity through a pair of redox reactions. [2]
standard off-the-shelf PEM fuel cell systems available from 10W to 5 kW, or customized fuel cell system configurations up to 150 kW; premium H-1000XP 1 kW stacks with peak efficiency of 59% proven during testing at Shell Eco-Marathon in Asia; ultra-light and compact Aerospace from 200W to 1,000W. fuel cell powered Hydro car
The fuel cartridge stores the methanol fuel. Depending on the system design either 100% methanol (IMPCA industrial standard) or a mixture of methanol with up to 40 vol% water is usually used as fuel for the RMFC system. 100% methanol results in lower fuel consumption than water-methanol mixture (Premix) but goes along with higher fuel cell system complexity for condensing of cathode moisture.
Microbial fuel cell (MFC) is a type of bioelectrochemical fuel cell system [1] also known as micro fuel cell that generates electric current by diverting electrons produced from the microbial oxidation of reduced compounds (also known as fuel or electron donor) on the anode to oxidized compounds such as oxygen (also known as oxidizing agent or electron acceptor) on the cathode through an ...
Direct methanol fuel cells or DMFCs are a subcategory of proton-exchange membrane fuel cells in which methanol is used as the fuel and a special proton-conducting polymer as the membrane (PEM). Their main advantage is low temperature operation and the ease of transport of methanol, an energy-dense yet reasonably stable liquid at all ...
Ruthenium and platinum are often used together, if carbon monoxide (CO) is a product of the electro-chemical reaction as CO poisons the PEM and impacts the efficiency of the fuel cell. Due to the high cost of these and other similar materials, research is being undertaken to develop catalysts that use lower cost materials as the high costs are ...