Search results
Results from the WOW.Com Content Network
In probability and statistics, the Kumaraswamy's double bounded distribution is a family of continuous probability distributions defined on the interval (0,1). It is similar to the beta distribution, but much simpler to use especially in simulation studies since its probability density function, cumulative distribution function and quantile functions can be expressed in closed form.
In probability theory, the Modified Kumaraswamy (MK) distribution is a two-parameter continuous probability distribution defined on the interval (0,1). It serves as an alternative to the beta and Kumaraswamy distributions for modeling double-bounded random variables.
The Birnbaum–Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times. The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables.
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
Kumaraswamy or Kumaraswami is an Indian male given name. It may also refer to: Murugan, also called Kumaraswami or Kartikeya, the Hindu god of war; Kumaraswamy distribution, a distribution form related to probability theory and statistics; Kumaraswamy Layout, a residential locality in southern Bangalore, India
Thus the distribution is a compound probability distribution. This distribution has also been called both the inverse Markov-Pólya distribution and the generalized Waring distribution [1] or simply abbreviated as the BNB distribution. A shifted form of the distribution has been called the beta-Pascal distribution. [1]
Probability density functions of the order statistics for a sample of size n = 5 from an exponential distribution with unit scale parameter. In statistics, the kth order statistic of a statistical sample is equal to its kth-smallest value. [1]
The Johnson's S U-distribution is a four-parameter family of probability distributions first investigated by N. L. Johnson in 1949. [ 1 ] [ 2 ] Johnson proposed it as a transformation of the normal distribution : [ 1 ]