enow.com Web Search

  1. Ad

    related to: uncertainty modelling in ai software
    • The New Era of Copilot

      Unlocking the New Era of AI And

      Learn About Latest AI Advancements.

    • Explore AI

      Discover the Latest Innovations &

      Get AI-Generated Code Suggestions.

Search results

  1. Results from the WOW.Com Content Network
  2. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    There are two major types of problems in uncertainty quantification: one is the forward propagation of uncertainty (where the various sources of uncertainty are propagated through the model to predict the overall uncertainty in the system response) and the other is the inverse assessment of model uncertainty and parameter uncertainty (where the ...

  3. Symbolic artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Symbolic_artificial...

    In artificial intelligence, symbolic artificial intelligence (also known as classical artificial intelligence or logic-based artificial intelligence) [1] [2] is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. [3]

  4. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    Identify the model output to be analysed (the target of interest should ideally have a direct relation to the problem tackled by the model). Run the model a number of times using some design of experiments, [15] dictated by the method of choice and the input uncertainty. Using the resulting model outputs, calculate the sensitivity measures of ...

  5. Data-driven model - Wikipedia

    en.wikipedia.org/wiki/Data-driven_model

    Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]

  6. Analytica (software) - Wikipedia

    en.wikipedia.org/wiki/Analytica_(software)

    Analytica is a visual software developed by Lumina Decision Systems for creating, analyzing and communicating quantitative decision models. [1] It combines hierarchical influence diagrams for visual creation and view of models, intelligent arrays for working with multidimensional data, Monte Carlo simulation for analyzing risk and uncertainty, and optimization, including linear and nonlinear ...

  7. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive modeling is a statistical technique used to predict future behavior. It utilizes predictive models to analyze a relationship between a specific unit in a given sample and one or more features of the unit. The objective of these models is to assess the possibility that a unit in another sample will display the same pattern.

  8. Probability bounds analysis - Wikipedia

    en.wikipedia.org/wiki/Probability_bounds_analysis

    Probability bounds analysis (PBA) is a collection of methods of uncertainty propagation for making qualitative and quantitative calculations in the face of uncertainties of various kinds. It is used to project partial information about random variables and other quantities through mathematical expressions.

  9. Prognostics - Wikipedia

    en.wikipedia.org/wiki/Prognostics

    Uncertainty in nominal system model: this concerns the imprecisions in the mathematical models which is generated to represent the behavior of the system. These imprecisions (or uncertainties) can be the result of a set of assumptions used during the modeling process and which lead to models that don't fit exactly the real behavior of the system.

  1. Ad

    related to: uncertainty modelling in ai software