enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.

  3. Conformal prediction - Wikipedia

    en.wikipedia.org/wiki/Conformal_prediction

    Conformal prediction (CP) is a machine learning framework for uncertainty quantification that produces statistically valid prediction regions (prediction intervals) for any underlying point predictor (whether statistical, machine, or deep learning) only assuming exchangeability of the data. CP works by computing nonconformity scores on ...

  4. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    It is possible to select similar samples from derivative-based sensitivity through Neural Networks and perform uncertainty quantification. One advantage of the local methods is that it is possible to make a matrix to represent all the sensitivities in a system, thus providing an overview that cannot be achieved with global methods if there is a ...

  5. Interval predictor model - Wikipedia

    en.wikipedia.org/wiki/Interval_Predictor_Model

    This results in an IPM which makes predictions with homoscedastic uncertainty. Sadeghi (2019) demonstrates that the non-convex scenario approach from Campi (2015) can be extended to train deeper neural networks which predict intervals with hetreoscedastic uncertainty on datasets with imprecision. [ 9 ]

  6. Model order reduction - Wikipedia

    en.wikipedia.org/wiki/Model_order_reduction

    Empirical gramians can be computed for linear and nonlinear control systems for purposes of model order reduction, uncertainty quantification or system identification. The emgr framework is a compact open source toolbox for gramian-based model reduction and compatible with OCTAVE and MATLAB.

  7. Quantification of margins and uncertainties - Wikipedia

    en.wikipedia.org/wiki/Quantification_of_margins...

    Quantification of Margins and Uncertainty (QMU) is a decision support methodology for complex technical decisions. QMU focuses on the identification, characterization, and analysis of performance thresholds and their associated margins for engineering systems that are evaluated under conditions of uncertainty, particularly when portions of those results are generated using computational ...

  8. Stochastic gradient Langevin dynamics - Wikipedia

    en.wikipedia.org/wiki/Stochastic_Gradient_Langev...

    SGLD can be applied to the optimization of non-convex objective functions, shown here to be a sum of Gaussians. Stochastic gradient Langevin dynamics (SGLD) is an optimization and sampling technique composed of characteristics from Stochastic gradient descent, a Robbins–Monro optimization algorithm, and Langevin dynamics, a mathematical extension of molecular dynamics models.

  9. Uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_analysis

    In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.