enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sylvester equation - Wikipedia

    en.wikipedia.org/wiki/Sylvester_equation

    Download QR code; Print/export ... a Sylvester equation is a matrix equation of the form: [1] ... MATLAB function to solve the Sylvester equation

  3. Bartels–Stewart algorithm - Wikipedia

    en.wikipedia.org/wiki/Bartels–Stewart_algorithm

    In numerical linear algebra, the Bartels–Stewart algorithm is used to numerically solve the Sylvester matrix equation =.Developed by R.H. Bartels and G.W. Stewart in 1971, [1] it was the first numerically stable method that could be systematically applied to solve such equations.

  4. Alternating-direction implicit method - Wikipedia

    en.wikipedia.org/wiki/Alternating-direction...

    In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations.It is a popular method for solving the large matrix equations that arise in systems theory and control, [1] and can be formulated to construct solutions in a memory-efficient, factored form.

  5. Sylvester matrix - Wikipedia

    en.wikipedia.org/wiki/Sylvester_matrix

    Download QR code; Print/export ... a Sylvester matrix is a matrix associated to two univariate polynomials with ... The solutions of the simultaneous linear equations

  6. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]

  7. Cross Gramian - Wikipedia

    en.wikipedia.org/wiki/Cross_Gramian

    In control theory, the cross Gramian (, also referred to by ) is a Gramian matrix used to determine how controllable and observable a linear system is. [1] [2]For the stable time-invariant linear system

  8. Hadamard matrix - Wikipedia

    en.wikipedia.org/wiki/Hadamard_matrix

    Let H be a Hadamard matrix of order n.The transpose of H is closely related to its inverse.In fact: = where I n is the n × n identity matrix and H T is the transpose of H.To see that this is true, notice that the rows of H are all orthogonal vectors over the field of real numbers and each have length .

  9. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    For the general case of an arbitrary number n of variables, there are n sign conditions on the n principal minors of the Hessian matrix that together are equivalent to positive or negative definiteness of the Hessian (Sylvester's criterion): for a local minimum, all the principal minors need to be positive, while for a local maximum, the minors ...