Search results
Results from the WOW.Com Content Network
The prime decomposition theorem for 3-manifolds states that every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) collection of prime 3-manifolds. A manifold is prime if it cannot be presented as a connected sum of more than one manifold, none of which is the sphere of the same dimension.
In the theory of 3-manifolds, a compression body is a kind of generalized handlebody. A compression body is either a handlebody or the result of the following construction: Let be a compact, closed surface (not necessarily connected). Attach 1-handles to [,] along {}.
In particular if the surgery coefficient is of the form /, then the surgered 3-manifold is still the 3-sphere. If M {\displaystyle M} is the 3-sphere, L {\displaystyle L} is the right-handed trefoil knot , and the surgery coefficient is + 1 {\displaystyle +1} , then the surgered 3-manifold is the Poincaré dodecahedral space .
Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...
A prism manifold is a closed 3-dimensional manifold M whose fundamental group is a central extension of a dihedral group.. The fundamental group π 1 (M) of M is a product of a cyclic group of order m with a group having presentation
In mathematics, in the topology of 3-manifolds, the loop theorem is a generalization of Dehn's lemma. The loop theorem was first proven by Christos Papakyriakopoulos in 1956, along with Dehn's lemma and the Sphere theorem. A simple and useful version of the loop theorem states that if for some 3-dimensional manifold M with boundary ∂M there ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, an incompressible surface is a surface properly embedded in a 3-manifold, which, in intuitive terms, is a "nontrivial" surface that cannot be simplified.In non-mathematical terms, the surface of a suitcase is compressible, because we could cut the handle and shrink it into the surface.