Ad
related to: physiology of how insulin works
Search results
Results from the WOW.Com Content Network
Insulin is a peptide hormone containing two chains cross-linked by disulfide bridges. Insulin (/ ˈ ɪ n. sj ʊ. l ɪ n /, [5] [6] from Latin insula, 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (INS) gene. It is the main anabolic hormone of the body. [7]
The effects of insulin vary depending on the tissue involved, e.g., insulin is most important in the uptake of glucose by muscle and adipose tissue. [ 2 ] This insulin signal transduction pathway is composed of trigger mechanisms (e.g., autophosphorylation mechanisms) that serve as signals throughout the cell.
Diabetes mellitus type 1 is caused by insufficient or non-existent production of insulin, while type 2 is primarily due to a decreased response to insulin in the tissues of the body (insulin resistance). Both types of diabetes, if untreated, result in too much glucose remaining in the blood (hyperglycemia) and many of the same complications.
The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. [5] Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis; a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer.
Increased insulin secretion leads to hyperinsulinemia, but blood glucose levels remain within their normal range due to the decreased efficacy of insulin signaling. [4] However, the beta cells can become overworked and exhausted from being overstimulated, leading to a 50% reduction in function along with a 40% decrease in beta-cell volume. [ 9 ]
Insulin was first used as a medication in Canada by Charles Best and Frederick Banting in 1922. [85] [86] This is a chronology of key milestones in the history of the medical use of insulin. For more details on the discovery, extraction, purification, clinical use, and synthesis of insulin, see Insulin
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This process is illustrated by the insulin receptor sites on target cells, e.g. liver cells, in a person with type 2 diabetes. [6] Due to the elevated levels of blood glucose in an individual, the β-cells (islets of Langerhans) in the pancreas must release more insulin than normal to meet the demand and return the blood to homeostatic levels. [7]
Ad
related to: physiology of how insulin works