Search results
Results from the WOW.Com Content Network
which is an eigenvalue equation. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. However, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies, or eigenvalues, can be found.
Thus the solutions () are just the Legendre functions ( ()) with =, and =,,, =,,,,. Moreover, eigenvalues and scattering data can be explicitly computed. [ 3 ] In the special case of integer λ {\displaystyle \lambda } , the potential is reflectionless and such potentials also arise as the N-soliton solutions of the Korteweg–De Vries ...
Even more generally, it holds that a general solution to the Schrödinger equation can be found by taking a weighted sum over a basis of states. A choice often employed is the basis of energy eigenstates, which are solutions of the time-independent Schrödinger equation.
In quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves.The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension.
The Hartree–Fock method is typically used to solve the time-independent Schrödinger equation for a multi-electron atom or molecule as described in the Born–Oppenheimer approximation. Since there are no known analytic solutions for many-electron systems (there are solutions for one-electron systems such as hydrogenic atoms and the diatomic ...
It is used to analyse discrete dynamical systems by finding a new coordinate system in which the system (orbit) generated by h(x) looks simpler, a mere dilation.. More specifically, a system for which a discrete unit time step amounts to x → h(x), can have its smooth orbit (or flow) reconstructed from the solution of the above Schröder's equation, its conjugacy equation.
Since the time separation is infinitesimal and the cancelling oscillations become severe for large values of ẋ, the path integral has most weight for y close to x. In this case, to lowest order the potential energy is constant, and only the kinetic energy contribution is nontrivial.
This is an eigenvalue equation: ^ is a linear operator on a vector space, | is an eigenvector of ^, and is its eigenvalue.. If a stationary state | is plugged into the time-dependent Schrödinger equation, the result is [2] | = | .