enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of quantum-mechanical systems with analytical solutions

    en.wikipedia.org/wiki/List_of_quantum-mechanical...

    which is an eigenvalue equation. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. However, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies, or eigenvalues, can be found.

  3. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    Even more generally, it holds that a general solution to the Schrödinger equation can be found by taking a weighted sum over a basis of states. A choice often employed is the basis of energy eigenstates, which are solutions of the time-independent Schrödinger equation.

  4. Pöschl–Teller potential - Wikipedia

    en.wikipedia.org/wiki/Pöschl–Teller_potential

    Thus the solutions () are just the Legendre functions (⁡ ()) with =, and =,,, =,,,,. Moreover, eigenvalues and scattering data can be explicitly computed. [ 3 ] In the special case of integer λ {\displaystyle \lambda } , the potential is reflectionless and such potentials also arise as the N-soliton solutions of the Korteweg–De Vries ...

  5. Step potential - Wikipedia

    en.wikipedia.org/wiki/Step_potential

    In quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves.The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension.

  6. Hartree–Fock method - Wikipedia

    en.wikipedia.org/wiki/Hartree–Fock_method

    The Hartree–Fock method is typically used to solve the time-independent Schrödinger equation for a multi-electron atom or molecule as described in the Born–Oppenheimer approximation. Since there are no known analytic solutions for many-electron systems (there are solutions for one-electron systems such as hydrogenic atoms and the diatomic ...

  7. Unitary transformation (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Unitary_transformation...

    In quantum mechanics, the Schrödinger equation describes how a system changes with time. It does this by relating changes in the state of the system to the energy in the system (given by an operator called the Hamiltonian). Therefore, once the Hamiltonian is known, the time dynamics are in principle known.

  8. Stationary state - Wikipedia

    en.wikipedia.org/wiki/Stationary_state

    This is an eigenvalue equation: ^ is a linear operator on a vector space, | is an eigenvector of ^, and is its eigenvalue.. If a stationary state | is plugged into the time-dependent Schrödinger equation, the result is [2] | = | .

  9. Particle in a spherically symmetric potential - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_spherically...

    In the general time-independent case, the dynamics of a particle in a spherically symmetric potential are governed by a Hamiltonian of the following form: ^ = ^ + Here, is the mass of the particle, ^ is the momentum operator, and the potential () depends only on the vector magnitude of the position vector, that is, the radial distance from the ...