Search results
Results from the WOW.Com Content Network
The isogonal conjugate of the orthocenter is the circumcenter of the triangle. [10] The isotomic conjugate of the orthocenter is the symmedian point of the anticomplementary triangle. [11] Four points in the plane, such that one of them is the orthocenter of the triangle formed by the other three, is called an orthocentric system or ...
Orthocentric system.Any point is the orthocenter of the triangle formed by the other three. In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three.
The three altitudes of a triangle intersect at the orthocenter, which for an acute triangle is inside the triangle. The orthocenter of a triangle, usually denoted by H, is the point where the three (possibly extended) altitudes intersect. [1] [2] The orthocenter lies inside the triangle if and only if the triangle is acute.
The four altitudes of an orthogonal tetrahedron meet at its orthocenter. Edges AB, BC, CA are perpendicular to, respectively, edges CD, AD, BD. In geometry, an orthocentric tetrahedron is a tetrahedron where all three pairs of opposite edges are perpendicular. It is also known as an orthogonal tetrahedron since orthogonal means perpendicular.
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.
orthocenter: intersection of the three altitudes: X(5) nine-point center: center of the nine-point circle: X(6) symmedian point: intersection of the three symmedians: X(7) Gergonne point: symmedian point of contact triangle X(8) Nagel point: intersection of lines from each vertex to the corresponding semiperimeter point X(9) Mittenpunkt
In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
In geometry, the orthocentroidal circle of a non-equilateral triangle is the circle that has the triangle's orthocenter and centroid at opposite ends of its diameter.This diameter also contains the triangle's nine-point center and is a subset of the Euler line, which also contains the circumcenter outside the orthocentroidal circle.