Search results
Results from the WOW.Com Content Network
Ethyl sulfate can be produced in a laboratory setting by reacting ethanol with sulfuric acid under a gentle boil, while keeping the reaction below 140 °C. The sulfuric acid must be added dropwise or the reaction must be actively cooled because the reaction itself is highly exothermic. CH 3 CH 2 OH + H 2 SO 4 → CH 3 CH 2 OSO 3 H + H 2 O
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
A well-known example of a positive azeotrope is an ethanol–water mixture (obtained by fermentation of sugars) consisting of 95.63% ethanol and 4.37% water (by mass), which boils at 78.2 °C. [10] Ethanol boils at 78.4 °C, water boils at 100 °C, but the azeotrope boils at 78.2 °C, which is lower than either of its constituents. [11]
Ethanol-water mixtures have less volume than the sum of their individual components at the given fractions. Mixing equal volumes of ethanol and water results in only 1.92 volumes of mixture. [75] [80] Mixing ethanol and water is exothermic, with up to 777 J/mol [81] being released at 298 K. Hydrogen bonding in solid ethanol at −186 °C
The conversion of ethanol to ethylene is a fundamental example: [3] [4] CH 3 CH 2 OH → H 2 C=CH 2 + H 2 O. The reaction is accelerated by acid catalysts such as sulfuric acid and certain zeolites. These reactions often proceed via carbocation intermediates as shown for the dehydration of cyclohexanol. [5] Some alcohols are prone to dehydration.
The reaction of fatty acids with base is the other main method of saponification. In this case, the reaction involves neutralization of the carboxylic acid. The neutralization method is used to produce industrial soaps such as those derived from magnesium, the transition metals, and aluminium.
In organic chemistry, some dehydration reactions are subject to unfavorable but fast equilibria. One example is the formation of dioxolanes from aldehydes: [9] RCHO + (CH 2 OH) 2 RCH(OCH 2) 2 + H 2 O. Such unfavorable reactions proceed when water is removed by azeotropic distillation.