enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Turbofan - Wikipedia

    en.wikipedia.org/wiki/Turbofan

    Turbofans are the most efficient engines in the range of speeds from about 500 to 1,000 km/h (270 to 540 kn; 310 to 620 mph), the speed at which most commercial aircraft operate. [ 21 ] [ 22 ] In a turbojet (zero-bypass) engine, the high temperature and high pressure exhaust gas is accelerated when it undergoes expansion through a propelling ...

  3. Airbreathing jet engine - Wikipedia

    en.wikipedia.org/wiki/Airbreathing_jet_engine

    Modern turbofans are a development of the turbojet; they are basically turbojets that include a new section called the fan stage. Rather than using all their exhaust gases to provide direct thrust like a turbojet, turbofan engines extract some of the power from the exhaust gases inside the engine and use it to power the fan stage.

  4. Jet engine performance - Wikipedia

    en.wikipedia.org/wiki/Jet_engine_performance

    The type of jet engine used to explain the conversion of fuel into thrust is the ramjet.It is simpler than the turbojet which is, in turn, simpler than the turbofan.It is valid to use the ramjet example because the ramjet, turbojet and turbofan core all use the same principle to produce thrust which is to accelerate the air passing through them.

  5. Pratt & Whitney PW1000G - Wikipedia

    en.wikipedia.org/wiki/Pratt_&_Whitney_PW1000G

    The physical size of the gearbox was 17 inches (430 mm) in diameter, [2] or no more than half the gearbox size of the PW-Allison 578-DX propfan demonstrator engine that Pratt & Whitney worked jointly on with Allison in the 1980s. The gearbox consisted of 40 components, weighed 500 lb (230 kg), and shared a 3-U.S.-gallon (11-liter) oil tank with ...

  6. Propulsive efficiency - Wikipedia

    en.wikipedia.org/wiki/Propulsive_efficiency

    A corollary of this is that, particularly in air breathing engines, it is more energy efficient to accelerate a large amount of air by a small amount, than it is to accelerate a small amount of air by a large amount, even though the thrust is the same. This is why turbofan engines are more efficient than simple jet engines at subsonic speeds.

  7. Aircraft engine - Wikipedia

    en.wikipedia.org/wiki/Aircraft_engine

    This operation is a more efficient way to provide thrust than simply using the jet nozzle alone, and turbofans are more efficient than propellers in the transsonic range of aircraft speeds and can operate in the supersonic realm. A turbofan typically has extra turbine stages to turn the fan.

  8. Specific thrust - Wikipedia

    en.wikipedia.org/wiki/Specific_thrust

    Specific thrust has impact upon the performance of afterburning turbofans. A low (dry) specific thrust engine has a low tailpipe temperature, which means that the temperature rise across the afterburner can be high, boosting thrust. Nevertheless, the afterburning specific thrust is still relatively low.

  9. General Electric GE9X - Wikipedia

    en.wikipedia.org/wiki/General_Electric_GE9X

    In February 2012, GE announced studies on a more efficient derivative of the GE90, calling it the GE9X, to power both the -8 and -9 variants of the new Boeing 777X.It was to feature the same 128 in (325 cm) fan diameter as the GE90-115B with thrust decreased by 15,800 lbf (70 kN) to a new rating of 99,500 lbf (443 kN) per engine. [1]