enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    This is called a covalent bond. The bond order is equal to the number of bonding electrons minus the number of antibonding electrons, divided by 2. In this example, there are 2 electrons in the bonding orbital and none in the antibonding orbital; the bond order is 1, and there is a single bond between the two hydrogen atoms. [citation needed]

  3. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    If the two 1s orbitals are not in phase, a node between them causes a jump in energy, the σ* orbital. From the diagram you can deduce the bond order, how many bonds are formed between the two atoms. For this molecule it is equal to one. Bond order can also give insight to how close or stretched a bond has become if a molecule is ionized. [12]

  4. Bond order - Wikipedia

    en.wikipedia.org/wiki/Bond_order

    The bond order itself is the number of electron pairs (covalent bonds) between two atoms. [3] For example, in diatomic nitrogen N≡N, the bond order between the two nitrogen atoms is 3 (triple bond). In acetylene H–C≡C–H, the bond order between the two carbon atoms is also 3, and the C–H bond order is 1 (single bond).

  5. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Bond order is the number of chemical bonds between a pair of atoms. The bond order of a molecule can be calculated by subtracting the number of electrons in anti-bonding orbitals from the number of bonding orbitals, and the resulting number is then divided by two. A molecule is expected to be stable if it has bond order larger than zero.

  6. Electron pair - Wikipedia

    en.wikipedia.org/wiki/Electron_pair

    This also limits the number of electrons in the same orbital to two. The pairing of spins is often energetically favorable, and electron pairs therefore play a large role in chemistry. They can form a chemical bond between two atoms, or they can occur as a lone pair of valence electrons. They also fill the core levels of an atom.

  7. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    In Group 14 elements (the carbon group), lone pairs can manifest themselves by shortening or lengthening single bond (bond order 1) lengths, [16] as well as in the effective order of triple bonds as well. [17] [18] The familiar alkynes have a carbon-carbon triple bond (bond order 3) and a linear geometry of 180° bond angles (figure A in ...

  8. Oxidation state - Wikipedia

    en.wikipedia.org/wiki/Oxidation_state

    The bond-order formula at the bottom is closest to the reality of four equivalent oxygens each having a total bond order of 2. That total includes the bond of order ⁠ 1 / 2 ⁠ to the implied cation and follows the 8 − N rule [ 7 ] requiring that the main-group atom's bond-order total equals 8 − N valence electrons of the neutral atom ...

  9. Bonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Bonding_molecular_orbital

    Pi bonds are created by the “side-on” interactions of the orbitals. [3] Once again, in molecular orbitals, bonding pi (π) electrons occur when the interaction of the two π atomic orbitals are in-phase. In this case, the electron density of the π orbitals needs to be symmetric along the mirror plane in order to create the bonding ...