Search results
Results from the WOW.Com Content Network
Filled nodes are the visited ones, with color representing the distance: the redder, the closer (to the start node). Nodes in all the different directions are explored uniformly, appearing more-or-less as a circular wavefront as Dijkstra's algorithm uses a heuristic of picking the shortest known path so far.
It can be solved using Yen's algorithm [3] [4] to find the lengths of all shortest paths from a fixed node to all other nodes in an n-node non negative-distance network, a technique requiring only 2n 2 additions and n 2 comparison, fewer than other available shortest path algorithms need.
The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953) , who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O ( V 4 ) .
Percolation centrality is defined for a given node, at a given time, as the proportion of ‘percolated paths’ that go through that node. A ‘percolated path’ is a shortest path between a pair of nodes, where the source node is percolated (e.g., infected). The target node can be percolated or non-percolated, or in a partially percolated state.
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
A common interview question at Google is how to route data among data processing nodes; routes vary by time to transfer the data, but nodes also differ by their computing power and storage, compounding the problem of where to send data. The travelling purchaser problem deals with a purchaser who is charged with purchasing a set of products. He ...
Hereby, the problem of finding the shortest path between every pair of nodes is known as all-pair-shortest-paths (APSP) problem. As sequential algorithms for this problem often yield long runtimes, parallelization has shown to be beneficial in this field. In this article two efficient algorithms solving this problem are introduced.
Johnson's algorithm consists of the following steps: [1] [2] First, a new node q is added to the graph, connected by zero-weight edges to each of the other nodes.; Second, the Bellman–Ford algorithm is used, starting from the new vertex q, to find for each vertex v the minimum weight h(v) of a path from q to v.