Search results
Results from the WOW.Com Content Network
It is a common understanding in psychoacoustics that the ear cannot respond to sounds at such high frequency via an air-conduction pathway, so one question that this research raised was: does the hypersonic effect occur via the "ordinary" route of sound travelling through the air passage in the ear, or in some other way?
The brain utilizes subtle differences in loudness, tone and timing between the two ears to allow us to localize sound sources. [10] Localization can be described in terms of three-dimensional position: the azimuth or horizontal angle, the zenith or vertical angle, and the distance (for static sounds) or velocity (for moving sounds). [ 11 ]
The frequency of a sound is defined as the number of repetitions of its waveform per second, and is measured in hertz; frequency is inversely proportional to wavelength (in a medium of uniform propagation velocity, such as sound in air). The wavelength of a sound is the distance between any two consecutive matching points on the waveform.
In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges, allowing some to even hear ultrasounds
Heart sounds are the noises generated by the beating heart and the resultant flow of blood through it. Specifically, the sounds reflect the turbulence created when the heart valves snap shut. In cardiac auscultation , an examiner may use a stethoscope to listen for these unique and distinct sounds that provide important auditory data regarding ...
The brain possesses many different types of oscillators with different periods. Oscillators are simultaneously outputting frequencies from .02 Hz to 600 Hz. It is now well known that a computer is capable of running thousands of processes with just one high-frequency clock. Humans have many different clocks as a result of evolution.
Video showing how sounds make their way from the source to the brain. Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. [1] The academic field concerned with hearing is auditory science
The microwave auditory effect, also known as the microwave hearing effect or the Frey effect, consists of the human perception of sounds induced by pulsed or modulated radio frequencies. The perceived sounds are generated directly inside the human head without the need of any receiving electronic device.