enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Paramagnetic nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Paramagnetic_nuclear...

    The difference between the chemical shift of a given nucleus in a diamagnetic vs. a paramagnetic environment is called the hyperfine shift.In solution the isotropic hyperfine chemical shift for nickelocene is −255 ppm, which is the difference between the observed shift (ca. −260 ppm) and the shift observed for a diamagnetic analogue ferrocene (ca. 5 ppm).

  3. Paramagnetism - Wikipedia

    en.wikipedia.org/wiki/Paramagnetism

    Therefore, a simple rule of thumb is used in chemistry to determine whether a particle (atom, ion, or molecule) is paramagnetic or diamagnetic: [3] if all electrons in the particle are paired, then the substance made of this particle is diamagnetic; if it has unpaired electrons, then the substance is paramagnetic.

  4. Magnetochemistry - Wikipedia

    en.wikipedia.org/wiki/Magnetochemistry

    With one unpaired electron μ eff values range from 1.8 to 2.5 μ B and with two unpaired electrons the range is 3.18 to 3.3 μ B. Note that low-spin complexes of Fe 2+ and Co 3+ are diamagnetic. Another group of complexes that are diamagnetic are square-planar complexes of d 8 ions such as Ni 2+ and Rh + and Au 3+.

  5. Electron paramagnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Electron_paramagnetic...

    Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei. EPR spectroscopy is particularly ...

  6. Exchange interaction - Wikipedia

    en.wikipedia.org/wiki/Exchange_interaction

    By contrast, an isolated Ni atom (electron configuration = 3d 8 4s 2) in a cubic crystal field will have two unpaired electrons of the same spin (hence, =) and would thus be expected to have in the localized electron model a total spin magnetic moment of = (but the measured spin-only magnetic moment along one axis, the physical observable, will ...

  7. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Another property we can observe by examining molecular orbital diagrams is the magnetic property of diamagnetic or paramagnetic. If all the electrons are paired, there is a slight repulsion and it is classified as diamagnetic. If unpaired electrons are present, it is attracted to a magnetic field, and therefore paramagnetic.

  8. Electron nuclear double resonance - Wikipedia

    en.wikipedia.org/wiki/Electron_nuclear_double...

    The origin, for purposes of this explanation, can be thought of as the position of a molecule's localized unpaired electron. To determine the direction to the spin active nucleus from the localized unpaired electron (remember: unpaired electrons are, themselves, spin active) one employs the principle of magnetic angle selection.

  9. Pascal's constants - Wikipedia

    en.wikipedia.org/wiki/Pascal's_constants

    In magnetism, Pascals’ constants are numbers used in the evaluation of the magnetic susceptibilities of coordination compounds.The magnetic susceptibility of a compound is the sum of the paramagnetic susceptibility associated with the unpaired electrons and the opposing diamagnetic susceptibility associated with electron pairs. [1]