Search results
Results from the WOW.Com Content Network
The next stage of muon g − 2 research was conducted at the Brookhaven National Laboratory (BNL) Alternating Gradient Synchrotron; the experiment was known as (BNL) Muon E821 experiment, [17] but it has also been called "muon experiment at BNL" or "(muon) g − 2 at BNL" etc. [7] Brookhaven's Muon g − 2 experiment was constructed from 1989 to 1996 and collected data from 1997 to 2001.
Crucially, the Larmor frequency is independent of the polar angle between the applied magnetic field and the magnetic moment direction. This is what makes it a key concept in fields such as nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR), since the precession rate does not depend on the spatial orientation of the spins.
A more general case is when the initial muon spin direction (coinciding with the detector axis) forms an angle with the field direction. In this case the muon spin precession describes a cone which results in both a longitudinal component, , and a transverse precessing component, , of the total asymmetry. ZF μSR experiments in the ...
While the transfer of angular momentum on a magnetic moment from an applied magnetic field is shown to cause precession of the moment about the field axis, the rotation of the moment into alignment with the field occurs through damping processes. Atomic-level dynamics involves interactions between magnetization, electrons, and phonons. [3]
Precision tests of QED have been performed in low-energy atomic physics experiments, high-energy collider experiments, and condensed matter systems. The value of α is obtained in each of these experiments by fitting an experimental measurement to a theoretical expression (including higher-order radiative corrections) that includes α as a parameter.
The experiment setup contains 3 parts: an inhomogeneous magnetic field in front, the rotating field at the middle, and another inhomogeneous magnetic field at the end. Atoms after passing the first inhomogeneous field will split into 2 beams corresponding the spin up and spin down state.
Spintronics emerged from discoveries in the 1980s concerning spin-dependent electron transport phenomena in solid-state devices. This includes the observation of spin-polarized electron injection from a ferromagnetic metal to a normal metal by Johnson and Silsbee (1985) [5] and the discovery of giant magnetoresistance independently by Albert Fert et al. [6] and Peter Grünberg et al. (1988). [7]
If one measures the spin along a vertical axis, electrons are described as "spin up" or "spin down", based on the magnetic moment pointing up or down, respectively. To mathematically describe the experiment with spin-1/2 particles, it is easiest to use Dirac's bra–ket notation. As the particles pass through the Stern–Gerlach device, they ...