Search results
Results from the WOW.Com Content Network
The trace of a Hermitian matrix is real, because the elements on the diagonal are real. The trace of a permutation matrix is the number of fixed points of the corresponding permutation, because the diagonal term a ii is 1 if the i th point is fixed and 0 otherwise. The trace of a projection matrix is the dimension of the target space.
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then
The trace operator can be defined for functions in the Sobolev spaces , with <, see the section below for possible extensions of the trace to other spaces. Let Ω ⊂ R n {\textstyle \Omega \subset \mathbb {R} ^{n}} for n ∈ N {\textstyle n\in \mathbb {N} } be a bounded domain with Lipschitz boundary.
The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the Jacobian determinant of f. It carries important information about the local behavior of f.
The variation formula computations above define the principal symbol of the mapping which sends a pseudo-Riemannian metric to its Riemann tensor, Ricci tensor, or scalar curvature.
This operator acts on complex-valued functions of a complex variable. It is essentially the complex conjugate of the ordinary partial derivative with respect to. [clarification needed] It's important in complex analysis and complex differential geometry for studying functions of complex variables.
In mathematics, the Arthur–Selberg trace formula is a generalization of the Selberg trace formula from the group SL 2 to arbitrary reductive groups over global fields, developed by James Arthur in a long series of papers from 1974 to 2003.
The idea of solving minimization problems while restricting the values on the boundary can be further generalized by looking on function spaces where the trace is fixed only on a part of the boundary, and can be arbitrary on the rest. The next section presents theorems regarding weak sequential lower semi-continuity of functionals of the above ...