Search results
Results from the WOW.Com Content Network
Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...
Gaussian Uncorrelated Manually (no grad.) MAP No No No OpenTURNS; UQLab [17] Proprietary: MATLAB: Yes No No ND No Gaussian Correlated No MAP No No No UQLab; ooDACE [18] Proprietary: MATLAB: Yes No No ND No Gaussian Correlated No MAP No No No ooDACE; DACE: Proprietary: MATLAB: Yes No No ND No Gaussian No No MAP No No No DACE; GpGp: MIT: R: No No ...
GPOPS-II (pronounced "GPOPS 2") is a general-purpose MATLAB software for solving continuous optimal control problems using hp-adaptive Gaussian quadrature collocation and sparse nonlinear programming.
In this example we try to fit the function = + using the Levenberg–Marquardt algorithm implemented in GNU Octave as the leasqr function. The graphs show progressively better fitting for the parameters a = 100 {\displaystyle a=100} , b = 102 {\displaystyle b=102} used in the initial curve.
kde2d.m A Matlab function for bivariate kernel density estimation. libagf A C++ library for multivariate, variable bandwidth kernel density estimation. akde.m A Matlab m-file for multivariate, variable bandwidth kernel density estimation. helit and pyqt_fit.kde Module in the PyQt-Fit package are Python libraries for multivariate kernel density ...
GPML: A comprehensive Matlab toolbox for GP regression and classification; STK: a Small (Matlab/Octave) Toolbox for Kriging and GP modeling; Kriging module in UQLab framework (Matlab) CODES Toolbox: implementations of Kriging, variational kriging and multi-fidelity models (Matlab) Matlab/Octave function for stationary Gaussian fields
PottersWheel is a MATLAB toolbox for mathematical modeling of time-dependent dynamical systems that can be expressed as chemical reaction networks or ordinary differential equations (ODEs). [1] It allows the automatic calibration of model parameters by fitting the model to experimental measurements.
The MATLAB/DIDO toolbox does not require a "guess" to run the algorithm. This and other distinguishing features have made DIDO a popular tool to solve optimal control problems. [4] [7] [15] The MATLAB optimal control toolbox has been used to solve problems in aerospace, [11] robotics [1] and search theory. [2]